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BY S. A. Christianovich and I. M. Yuriev

The use of the linearized equaticms of Chaplygin to calculate
the subsonic flow of a gas permits solving the problem of the flow
about a wing profile for absence and presence of circulation
(referenoe 1).

The solution is obtained in a practical convenient form that
permits finding all the required magnitudes for the gas flow (lift,
iii% mcment velocity distribution over the profile, and critical

~Mach number . This solution is not expressed in simple closed form;
for a certain simplifying assumption, however, the equations of
Chaplygin can be reduced to equations with constant coefficients,
and solutions are obtained by using only the mathematical apparatus
of the theory of functions of a complex variable.

The methcd for stiplifying the equations was pointed out by
Chaplygln himself (reference 2). Tsien (reference 3) applied simi-
lar equations to the solution of the flow problem and obtatied a
solution for the case of the absenoe of circulaticm. He did not
succeed h obtaintig the flow about the profile in the presence of
circulation.

1. EQUATIONS OF MOTION

The equations of the two-dbmnsional adiabatic irrotational
flow of a gas are of the form

W3.L+us.d =()
ax i)y

(1.1)

I
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2 NACA TM 1250

where w is the magnttude of the velocity, P the density, a
the velocity of sound, a* the critical velooity, and u and v
the projections of the velocity vector an the x- and y-axes.

lWom these equations it follows that the eqressions

Up = -$dx+ --$dy

(1.2)

d~ . P v~+P u ay.—
P. a++ P. *

~ is the density of the gas at w=O.are total differentials; P“

By solving these equations for dx and dy, there is obtained

(1.3)

where h = w/a*.

JRromthe conditions expressing the fact that the right sides
of equations (1.3) are total differentials

the equations of Chaplygln are obtained
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By introducing in place of the variable A the variable s
defined by the equation (reference 1)

.s=G~
(1.4)

the equation of Chaplygti to the form

(1.5)

where

The
equation

The

Maoh number is M = w/a. The constsnt of integration in
(1.4) is chosen with the condition that es/A = 1 for A +0.

function es isidenoted in that which follows by ~ .
Tables of the values of A and @ as functions of A are given

in reference 1.

If in equations (1.5) w and y are taken as the unkown
variables caunected with s andd by the relation

s- ia=f(y+iw)

where f(~ + iv) is an analytic function of y + iv, equations
(1.5) can be replaoed by the system of equations”

(1.6)

+V=g

and
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‘(1.7)

The coordinates x and y are determined flmm equations (1.3).
The functions satisfying equations (1.6) and (1.7) con’vertthe
right sides of equations (1.3) into total differentials.

2. APPROXIMATE EQUATIONS

It is assumed as an approximation in equations (1.5) that

fis <Kco where ~Kco is the value of ~ corresponding to
x .~.

Let

Equations (1.7) then assume the fomn

Because of this stiplification of equations (1.7), the right
sides of equations (1.3)will no longer be total differentials
after the solutions of the system of equations (1.6) and (2.1)
are substituted in them. It is necessary to make changes in
equations (1.3) to compensate for the simplification of eg.uatims
(1.7).

(2.1)

Then

8

.

cc
m
mld

Moreover,
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Whence

1-.
A-

(210s + C2e-s

(2.2)

h) 1
~ ~ : (C2e-s-Cles) ~a

The values of the constants are chosen from the condition
requiring the exact satisfying of equations (2.2) for A = k.

b

.

b

.

(2.3)

Substitut@ in equations (1.3) the correspcd@3 expressims
frum equations (2.2), the following equation is obtained:

dx + idy = Cles+i$ (d~id~ - C2e-s+id (dq+id~ (2.4)

The right side of equation (2.4) by virtue of equations (1.6)
and,(2.1) is a total differential.

Consider the Jacobi= D(x~Y)/D(% @: ~tig ‘se ‘f ‘qwtion
(2.4), it is found that

++

Dx c22e-2s - c12e2s
D CP,V =

.
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.

the determinant should not he zero, it is
following inequality be satisfied:

This condition is a consequence of the modification made in
the equations of motiqn; however, it is not essential. This
inequality is generally satisfied if the fundamental inequality
~< ~or is satisfied where ~cr = 0.7577 . . corresponds to A = 1.

3. FOR?WWJ!ION OF TEE PROBLEM

lhtheplane z=p+iv, a closed contour about which is a
flow of an incompressiblefluid is considered. The direction of
the flow will be taken to coincide with the direction of the
x-axis and the velocity at infinity ~. Let f =f(z) be the

complex potential corresponding

s- “ia

to this flow and set

= log~ (3.1)

The solutkm of equations (1.6) as detezmdned by equations
(3.1) is to be treated as the solution”of the problem of the flow
about a profile in the p.,v-planeof a fictitious stream of an
imcmpressible fluid. The magn~tude of the velocity at each
point of this flow is equal toh and the angle of inclination

of the velocity vector to the x-axis is equal

df
E=

~e-ia

The ca?uplexpotential may be represented

to ~; thus

in the form

“

.

(3.2)

z = x(t)
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where z =x(~) is a function mapping the outer region with respect
to a circle of unit radius in the ~-plene on a region outside the

contour considered. This function satisfies the conditions

The last condition determines the scale for the contour In
the plue w + iv.

The expansion of z = X(t) in the neighborhood of the petit
at infinity has the form

Hence b the neighborhood of the point at infinity

(3.3)

(3.4)

The c?zculation of the velocity ~ ~in the fluw of an incomp-
ressible fluid is equal to ~ = ?~

~ *he ~-plane, the velocity potential CP and the strean

function “$ will be considered also as the velocity potential
and the stream function of sa incanpressible fluid about a cir-
cular cylinder.

The complex potential F = q + it is introduced and repre-
sented in the form

where y is as yet an arbitrary
cula%ion of this flow.

)L+ Llog~
f 21ci

(3.5)

parameter determining the cir-
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Ih the solution of the exact equations it
plaoe of the function (3.5), to find the exaot
tion of the linear system (1.7). In reference
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is necessary, in
corresponding solu-
1, this solution

is constructed by the method of successive approximations.

Equation (2.4), in the notation assumed, may be written in the
form

(3.6)

By considering all magnitudes as functions of the variable ~,
the following expression is obtained:

or transforming it again

(3.7)

(3.8)

Thus, laxming the function z =X(t)z it M possible to make
use of equation (3.7) or (3.8) to detezmine x and y with the aid
of quddratures.

The conditions the functions z =X(C) and equation (3.5) must
satisfy in order that the obtained solution correspond to a pllys-
ically possible flow are considered.

In order that-the solutlon have a physioal sense, it is nec-
essary that the region in the x,y-phme corresponding to this
solution be a single-sheet region.

A necessary condition for this condition is that the inte-
gral of dx + idy should be zero over any closed contour in the
region Itl > 1.

Because the expressions on the right of equation (3.7) are
the sum of analytic functions of ~ and~ having no singularities
in the region I!I > ~, the corresponding integrals do not
depend on the shape of the path of integration and are equal to
zero in going around any closed contour not including the circle
[fl= 1.
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The values of the integrals along any closed contour, including
the circle 1~] = 1, are equal; consider the titegral of ax + idy
along a cirole of large radius with center at the origti of
coord-tes.

~the neighborhood of the point at infinity

whence

+

U? df
tidz=l

Moreover

By substituting in equation (3.7), integrating over the cir-
cle ]~]=R, and passing to the limit as R+=

JdX +-Ldy =

Replacing Cl - C2

equations (2.3) gives

P

C2 (Y - ;) + CI%S2(7 +7)

by the corresponding values fh?om

J J -V’Y”%ddx+idy=-~ 7

Thus the condition that to sny closed oontour
]~1~1 should correspond a olosed contour in the
sists in the fact that the previously undetermined
the function (3.5) must be taken equal to

“A

in the region
x,y-pkne oon-
value of 7 in

(3.9)

.

.
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This value of
passage around the
is proportional to

When equation
ity is considered,

y is proportional to
closed contour in the
the circulation of the
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the potential in the
x,y-plane and therefore
actual flow.

(3.7) in the neighborhood of
it is found that the ellipse

x- X. =
i% ()-p+ol z

Y- L ()‘O=M/=c’q+O+

the point at infin-

(3.10)

oorrespmds to the circle of radius R in the plane ~=p+iq.

Thus the neighborhood of the point at infinity in the ~-plane
is uniquely mapped on the region of the point at infinity in the
x,y-plane,

4. INVESTIGATION OF CONTOUR IN X,Y-PLANE

Equation (3.7) is ooneidered near the oontour 1~1=1. The

derivative of the function (3.2) becomes zero on the circle Igl=1
at the two points

f
S140

01 =
(4.1)

E = ei(fl‘“eo)
02

ftieo=g)

Then

df t - fol) (~ - co’)
—=x@(

(4.2)
dfj 12

b an analogous manner, the derivative of the function (3.5)
where y is detemined by equation [3.9) can%e represented in
the form

(4.3)
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where

U.

L*2= ef (-J ‘*’;:=+C.~
Equation (3.7) till therefore be

(4.4)

In the absence of circulation, for example, for F=y=o,

dx + idy = C2X’ +

It is shuwnby equation (3.7) or (4.5) that the points of the
contour corresponding to the zeros of the functions df~dz and
dl?/d~ will, generally speaking, be simgular points of the contour.
The presence of these singularities is a consequence of the modi-
fication of equations (1.7).

W considering in greater detail what takes place in the
neighborhood of these points, let df/dz in the neighborhood of
~ = ~~ have an expansion in the form

1

where O<k~ 1. To a OUSP of the profile in the z-plane (for
example, the tail point of the profile with zero angle) corresponds
the value k = O, and to a regular point of the contour corresPofis
the value k = 1. In the neighborhood of the point ~=~() (fr~
equation (3.7))

dx + idy = d~ +. . .
(g -*W

u



12 NACA TM 1250

where A is a certain coefficient; thus,

for k<l

x- xo+i (y- Y())= +-
k (~ - fj))l-k +.. .

fork=l

x- Xo+i(y-ye)= Alog(&~o) +...

It follows that an angular point of the contour in the
x,y-pl.anewill correspond to the point ~ = fjO;this angular

point with angle a(l-k) is turned concave to the flow; for
k = 1 the vertex of the angle approaches infinity.

The point ~ = C* at which dF/d~ becomes zero is now oon-

side.red. IA df/dz at this point
sion of this function into a series
point take the form

also beoome zero and the e~an-
in the neighborhood of this

(t -go)+... 1
The point at which ~ = O is a regular point of the con-

tour in the plane z = u+iv. The point at which l>L>O is an
~lm point of the contour. At this point, the ar@e is con-.
cave to the region outside the contour.

In the neighborhomi of the point
. .

dx+idy=B (&@b

and therefore

X-xo+i(y-ye)= B~(g-g* )2-t+.. .
2

To this point in the x,y-plane also corresponds a cusp. For
1 = O this point @ a cusp with its sharp point faoing the flow;
for 1>0 this point is angulsr with eagle fi(2-t);for g = 1
it is an ordinary point of the contour.

.

.

.

●
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50 FLOW ABOUT AN ARC OF A C~OLE

Before proceeding to the consideration of the flow about a
mntour of arbitrary shape, the example of the flow about a oon-
tour correspondingto an arc of a cirole in the plane z = p + iv
should be considered. The fwmtion

where k c 1 maps the region outside
t e circle shuwn in figme 1 tito the

Ii = 1.

+ ki

the “out” along the arc of
region outside the circle

The derivative

dz
~=1-

becomes zero at the points

502 =-ki

corresponding to the ends of the

detemnined by the equation

l-k2

(f + ki)2

d 1 - k2

‘F+ l-k2

am. The mgle 60 is therefore

Sineo =-k

Then

only the ease of flow for which the velocities at the ends
of the aro are finite H be considered. h this ease,
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The derivative of the function F(t) with respect to ~ in
this case will be

where

Equation (3.7) assumes the following form:

By integrating this equation,

.

.

J.#( )(‘i 1‘di+?ip)-w’”~ n&?+l-~
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The constaut of integration C is chosen so that for Me_O
the initial arc of the circle is obtained. For Me+O,
equation (5.1) becomes

X+iy=g+kic+ti
~+ki

It is assumed that C =~/&

The ends of the contour obtained correspond to the points
t*l - t*2, and the points ~01 and ~02 become ofilmary points

of the contour. The tangents at the angular points-of the contour
coincide at the upper and lower sides. With an accuracy up to

k2 for x and @ for y, the coordinates of the end points of the
am will be

‘,=~q..,-. )+...
a

The maximum thickness of the oontour is equal to

The arc comesponding to the case k = 0.04, Mm= Mcr =
iS shown in fi@re 2.

Ifin
nitudes of
magnitudes
parabola

Shilar to

the expression-for x there are retained only the
the first order and in the expression for y only
of the order of k, the profile will be sn arc of

●

0.803

mag-
the
a

the tiitial arc but with an aocuracy UP to hi~her orders.
b figure 2 this paabola is shown by a dashed-l~e. -
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Still another example of an irrotational flow about a contour
corresponding to an ellipse in the plane z=~+iu s~l~be
considered. The function

where O < r < 1 maps the region ICI> 1
the ellipse

2 ~2
+

(1 + r2)2 )2 -r2)2 =

on the region outside

1

After integration equaticm (3.7) gtves

X+,, =C2 (,+f)+c~z[~.lo.~;:+z+~]

Because (5.2)

(
~ti l+r2(r2-2)10gg -

J
r+~++ .~+g.~

r+O =3 ~+r r 5 3~3

equation (5.2) for r = O assumes the form

(
x+iY=c2g+cl U~+ 2- 1

)~~

If 6= l-r Is denoted and in equation (5.2) magnitudes of the
order C2 are neglected

X+iy=
(

c~ g+

.

.
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The profile represented by this last equation is very close
to the initial ellfpse. .

6. FLOWABOUTANARBITRARYC?ONTOUR

In order to obtain in the x,y-plane a contour without angu-
lar points, it is necessa?y in the auxiliary plane of the variable
z = L + iv to be given a contour having anguler points chosen in
a special manner.

A certain auxiliary,function is constructed that enables the
obtainment of the necessary singularities on the contour in all
cases considered.

h the plane of the complex variable ~, a region outside
the contour shown in figure 3 is considered. This contour con-
sists of the circle D and the cut along the src of the cir-
ule D? tangent to D at point c. The points a and b ~e
the angular points of the contour. The region considered is
mapped the region outside the unit circle (fig. 4) so that the
points a, b, and c correspond to the given points A, B, and C
on this circle and the derivative of the mapphg function at the
point of infinity is equal to unity. The radii of the circles D
&d D’ and the iength-of

The required mapping
equations:

u= ‘q+

the axc ‘abc are then determined.

function is determined by the following

%3 =-i+(q*- Q log (T* + i)

where
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where ~+s ~ OJ ‘d ~C are the coordi&tes of the points A, B, and

C in the plane ( ; and q* and “q. are the coordinates of the corre-

sponding points in the plane q.

For the derivative,

(6.1)

The function considered is denoted by ! = g(~). As is seen
from equation (6.1), this function satisfies the cmdition that
gf(cq ;1. - -

The function g(~), as follows from its gecmetric
regular for I?I>1 and on the circle 1~1= 1 has two
points f = [O and ~ = ~*.

sense, is
singular

At the point ~ =~c, the derivative d~~d~ is finite

The contour E in the w,v-plane is considered as having DO
angular points. Let the function z =X(!} map the region out-
side the contour onto the region outside the circle 1~~= 1.
~t fol and~02 be points on the cirole 1~1= 1 corresponding

to the critical points for the flow considered about the contour,
and ~*1 and 5*2 be the corresponding critical points for the

flow about the circle determined by the functim F(t). By
gl(~) and $2(~)> the values of the function g corresponding to

the points ~
01$ 5*1- koz~

{*2 are denoted. The values kcl

- kc~ may be chosen arbitrarily. Instead of the contour E in

the u.u-dane. the contour E*is considered, which bounds the.,- .
area on which the region
mined by the equation

d+=

I!I>l is~pped bythe function deter-

x’ (f) E!l’(t) gz’ (t) (6.2)
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To this contour in
without angular points.

The functions gl’

19

the x,y-pl=e will correspond a contour

and g2’ may be represented in the form

t-t 01 h

‘1’== 1

t-to2h
gz’ ‘—

E-t*2 2

where hl and ~ become zero at the points ~ = ~*1 and ~=!~

respectively, as ~log(~- ~*)1-2. Equation (4.5), which serves

for computing the coordinates In the x,y-plane, then assumes the
form

On integration, the singularities corresponding to hl and ~

vanish.

b the x,y-plane a clOsed contour without angular points is
obtained. The actual construction of the contour & is unnec-
essary. For constructing the contour k the x,y-plane and com-
puting the velocity field, only the derivative (6.2) is required.

The contour in the x,y-plane will approxhate the initial
contour in the plane z = w + iv and will approach coincidence
with the latter as Ma+O. The @eatest difference in the con-

tours will be near the critical points. BY a rational choice
of the magnitudes ~ c1 and gc2, the difference can be made a

minimum. The oontour shown in figure 5 iS that one corresPo~i~
to the case where the function z = X(t) is z=~ where

~ = 0.333

y=c=l
Y

e = 150°
cl

6C2 = 30°
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It is evident that the indicated methd of constructing the
function g is not the only one possible; it was discussed mly
from considerations of simplicity. It is not difficult to define
a function g making possible the construction in the x,y-plane
of a contour with any given angular point.

7. APPROXIMATE CONSTRUCTION OF CONTOUR

It was previously shown how to obtain in the x,y-plane a
uontour without angular points. The effect the angular points
of the contour will have, if they extst, on the fluw is now con-
sidered. For this purpose, h the ~-plane two auxiliary oir-
oles are drawn with centers at the potits ~ol and ~02 passing

through the points ~*1,and E*2. The

the arcs of the circle ~1= 1 and the
cles are mapped into a closed oontour

By making use of equations (3.2)
Ifl=l, it is seen that.

closed oontour formed by

ares of the auxiliary cir-
in the x,y-plane.

m (315) and noting that

g=
2iXme-id (sin 6J- sin 6.)

% 4.
dz dz

exp[i(,-,-~)

+ 4C11J $& 2
}

(sinO-sinr30)(sin@-sin6*) dz

.

(7.1)

In particulm in the absenoe of circulation
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{

-.\*’sb,e}dzdx+idy= C2+4C1&

The coefficient of dz is nearly constant for points removed
from toa ~*. The contour in the x~y-p~e therefore approx-

imates very closely the contour tithe z-plane.

The radius of the previously
equal to

P .2e.$(----

mentioned auxiliary circles is

1

):’0(+-1)

On an auxiliary circle A~ = ~ - ~o = peie; therefore

dA~ = ip ei~ de

By expanding dz/d~ in a series in the neigliborhod of the

Po~t t = EO, it can be seen that
---
,

%
=a+bA ~+...

where

With an accuracy up to
degree

dx +

By

magnitud-es—m~ P to the first

‘“=k%?-~t’‘oei’”+‘Pei’]“d’+0(’2)
(7.2)

making use of equatims (7.1) and (7.2), in the x,y-plsne
the closed contour is constructed. The part of the contour corre-
sponding to the auxiliary circles is not a streamline.

The details of the flow near the singular points may be seen
In figwe X6, which gives the mapping of the circle for Me = 0.333
ana~=y=l.
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The solution obtained maybe interpreted as the flow dbout a
contour with suction of a small mass of gas throt@ the surface of
the cmtour near the critioal potits. It oan be noted that %he
value of P is always very small; furthermore for very large
values of the lift forue 60 is mall, for exemple, 00 S 4.5°

for Cy = 1. For large values of Cy the value of M= 1A small

because Ma must not exoeed Mu; for small values of Cy the

values of 13* =e small.

TaMng into account the faot that the singular potnts are
looated in the neighborhood of the critical points where the veloc-
ities are ne= zero and that p is in all cases of very small mag-
nitude, the practical resuJt is obtained that it is possible in
_ ~ses to ne$le~t the effqct of the s@@ar points on the flow
about the remaining part of the contour and to carry out its con-
struction without the use of the function g.

8. ~OBEM OF JOUKOWSKI, COMPUTATION OF TRX MOMENT

OF TEEAERODYNMIC IVROES

in order to compute the forces exerted by the flow on the
airfoil, use is made of the well-lnmwn formulas obtatned in the
application of the law of conservation of momentum to the mass
of fluid contained between the contour of the wing and a certain
olosed oontour E which inoludes the wing contour.

(8.1)

Py = .: pax -/ pv (Udy - Vdx)

where P= and Py are the projections m the x- and y-axes of the

pressure forces of the fluw on the wing. The integrals in equa-
tions (8.1) are taken h the direotian for which the passage about
the oontour E is effeoted, that is, in the counterclockwise
direction.

By applying the law of conservation of mmentum for com-
puting the aerodynamic moment of the wing profile,

J
M= p(XdX+ydy)-

J
P (xv - yu)(udy- vdx) (8,2)

+ E E

.

“

.

9
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By making use of equations (3.7) and (6.2), the integrals
entering equations (8.1) and (8.2) may be transformed into inte-
grals taken over the corresponding oontour in the ~-plane. “The
ocmtour E is so chosen that to it in the ~-plane will corre-
spond a circle with center at the origin. All the magnitudes
entering under the integral si~ in equations (8.1) and (8.2) are
expanded into series in the neighborhood of the point at ~i.nity
in the ~-plane. l!&amequaticm (3.7),

On integrating, this equation becomes

&&-l)]+. ● .}+ L’cl{i-&(.~,+:)lwi+

~

t [
.,+al-~a]+.. .}+a+ao”i”i

where a.’ + a.“i is the constant of integration and al =13~+

iYl is the coefficient of ~‘2 in the expansion of df/dz h

the neighborhood of the point

mdtig u, v) P, P, x,
integrating, the folluwing

~=m.

y, dx, and dy in powers of l/r
expression is obtained:

p=. o

(8.3)

‘Y = -pa war
(
.Wm = a*Am, r .

~ A)

(an) ,

.
.“
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The theorem of Joukowski is thus valid also for the flow
about a body of a gas with lcu?gesubsonic velocities. This
theorem was proven earlier in reference 1 by making use of the
exact equations.

In a similar manner, the equation for the moment of the
aerodAc forces is

The constant ao’ determines the position of the point

relatjve to which the moment is computed. The moment for the
corresponding profile In = incompressible flow i.sequal to

where pn is the real part of the free term in the expansion of

the func~ion Z =X* (~) in the neighborhood of the point ~ .-.
Let aO’/a@= po. The chord of the deformed profile in the com-

pressible flow will be denoted by b and the chord of the pro-
file in the corresponding inccxnpressibleflow by b“; in gen-
eral the magnitudes referring to the incompressible flow will
be denoted by a superscript circle.

The moment coefficient for an immmpressible flow CmO is

given by

The moment coefficient for a compressible flow Cm is given

by

.

.
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%0 =
~fi”, and therefore
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The origin of coofiinates is chosen at the nose of the profile.
Then

is a fuuction of the focal distance from the nose of the profile
and the expression for the moment ~“ may be given tithe form

d~o
%“=— 0 + CJ

d~yo CY

where

is
to

the moment of the profile in the incompressible
the focal point.

The final expression for ~ cmbe given in
“ form:

flow relative

the following

(a.5)

Translated by S. Reiss
National Advisory Ccmqittee
for Aeronautics.
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